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Pulsations of the mass flow rate during pressure relief✩
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Abstract

During two-phase flow blowdown from pressure vessels considerable pulsations of the discharged mass flow rate were found. Regions of
mass flow rate instability were predicted by a linear stability analysis. The pulsations are caused by the following closed feedback circuit: boil
up – level swell – void fraction of the discharged mixture – critical discharge rate – velocity of pressure decrease – boil up. They were also
observed in transient simulations of the depressurization. Finally, the regions of instability were confirmed by experiments. The possibility
of the occurrence of pulsations increases with the volume of the ventline and the volume void fraction of the discharged mixture. They may
influence the rate of pressure relief from pressure vessels as well as from chemical reactors.
 2002 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

Emergency relief systems are usually very complex fa-
cilities regarding the geometries as well as the thermoflu-
iddynamic processes within the system in case of pressure
relief. For this reason feedback between the flow within the
ventline and the processes within the vessel may effect the
capacity of the entire system or parts of it. This paper re-
ports on the results of an analysis of a special feedback be-
tween the level swell within the reactor vessel and the dis-
charged volume flow rate. In case of two-phase flow venting
this feedback may cause pulsations of the mass flow rate un-
der certain conditions [1,2]. By a linear stability analysis
regions of instability of the mass flow rate were predicted.
The oscillations were also found at calculational results from
codes developed for the transient simulation of the blow-
down process. Finally the analytically predicted oscillations
were confirmed by experiments.

The component under investigation is a pressure vessel,
which is equipped with a vertical ventline connected at the
top (Fig. 1). The relief device is located at the upper end
of the ventline. It has a distinctly smaller cross section than
the pipe. Therefore, it can be assumed that the critical flow
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conditions are always reached in the relief device if the
vessel pressure is sufficiently high.

The sequence of the oscillations is shown in Fig. 1.
Four stages are distinguished. After starting the relief the
pressure decreases. Evaporation or degassing of the liquid
inventory of the vessel leading to a two-phase mixture is
the consequence. This leads to a level swell. In stage 1 the
top level of the mixture is below the inlet of the ventline,
but it is assumed that it still rises up. In stage 2 the level
reaches the ventline and a two-phase mixture enters the
ventline. Because of the assumption that the critical diameter
is located at the relief device, the discharged volume flow
rate is determined by the flow conditions at this location. In
stage 2 still only gas flows through the relief device, with
the consequence that the volume flow rate remains high. In
stage 3 the mixture arrives at the relief device after a certain
delay (time of transport). The critical discharge volume flow
rate strongly depends on the local mass flow quality. The
decrease of the mass flow quality at the critical cross section
results in a decrease of volume release, which is connected
with a decrease of the velocity of depressurization. This
leads to a reduction of the gas production in the vessel.
Under certain conditions the mixture level then starts to
fall. In stage 4 the top level of the mixture is located again
below the inlet of the ventline and only gas enters the
ventline. In this stage still two-phase mixture is discharged.
That means the volume flow rate remains low. Only after
all the liquid is discharged from the ventline, the velocity
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Nomenclature

A area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

K factor of the formula for the height of
the froth region

T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
V volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m3

a auxiliary variable defined by Eqs. (B.10), (10)
b auxiliary variable defined by Eq. (B.11)
cp specific heat capacity . . . . . . . . . . . W·kg−1·K−1

d diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
f density of the interphase boundary surface m−1

g constant of gravity acceleration . . . . 9.81 m·s−2

h specific enthalpy . . . . . . . . . . . . . . . . . . . . . J·kg−1

j superficial velocity . . . . . . . . . . . . . . . . . . . m·s−1

k prompt transfer function
ṁ mass flow rate . . . . . . . . . . . . . . . . . . . . . . . kg·s−1

p pressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
q heat flow density . . . . . . . . . . . . . . . . . . . . W·m−3

r specific heat of evaporation . . . . . . . . . . . J·kg−1

s independent variable of the Laplacian space s−1

t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
u specific internal energy . . . . . . . . . . . . . . . J·kg−1

v specific volume . . . . . . . . . . . . . . . . . . . . m3·kg−1

w transfer function in Laplacian space
x vapor mass fraction
z height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

Greek symbols

Γ density of the mass transfer rate. . . kg·m−3·s−1

Θ jump function
α heat transfer coefficient . . . . . . . . . W·m−2·K−1

γ auxiliary variable defined by Eq. (12) . . . . . . . m
ε void fraction
ζ velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m·s−1

κ adiabatic coefficient
µ factor of the discharge model considering

the contraction of the flow

ν volume source related on vessel volume . . . s−1

ν volume source caused by evaporation
related on the liquid volume. . . . . . . . . . . . . . s−1

ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg·m−3

σ surface tension . . . . . . . . . . . . . . . . . . . . . . N·m−1

φ auxiliary factor of the discharge model,
defined by Eq. (3)

ω angular frequency . . . . . . . . . . . . . . . . . . . . . . . s−1

Indices

comp compression
crit refers the values for critical flow
eva evaporation
froth froth
i refers the phase (l or v)
in values at the inlet of the ventline
delay refers the delay time within the ventline
l values of the liquid phase
level values at the top level of the two-phase mixture
open refers the transfer function of the open system
orif values at the orifice
out values at the end of the ventline=

stagnation point at the discharge channel
phases refers heat transfer within the single phases
m refers a transfer function defined at Eq. (4)
mν refers a transfer function defined at Eq. (5)
p refers a transfer function defined at Eq. (9)
s saturation
sep refers a transfer function defined at Eq. (11)
sources refers the heat transfer from external

sources (wall)
v values of the vapour phase
ventline refers the ventline
vessel values of the whole vessel
εν refers a transfer function defined at Eq. (6)

of depressurization increases again causing a re-established
level swell [3].

At the top of a two-phase mixture a more or less
developed frothy layer can always be found due to phase
separation. It prevents a sudden change between one-phase
and two-phase discharge. Therefore, continuous change of
the mass flow quality of the two-phase mixture, which enters
the ventline in case of small level fluctuations is more likely.
In this case oscillations caused by the mechanism described
above are also possible. The only difference is, that instead
of a sudden change between only gas venting and two-phase
venting an increase or decrease of the gas volume fraction
occurs. The height of the froth (or transition) zone has a
remarkable influence on the oscillations. The higher this
zone is, the more the oscillations are attenuated.

A linear stability analysis was used in order to determine
conditions for which the oscillations are possible.

2. Analysis of stability

The method of linear stability analysis is applied to the
signals of the measured mass discharge for the considered
system. An evaporating fluid is assumed. A linearisation of
models for the calculation of the mass flow rate is carried out
for the neighbourhood of an assumed working point. This
working point is an imaginary state of the system, for that
all the properties and their derivations are kept constant. It
represents the system at a given time during the transient
process. For the considered system the working point is
mainly characterized by a consistent solution for the void
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Fig. 1. Mechanism of the periodic oscillations.

Fig. 2. Scheme of the transfer functions.

profile within the vessel, the void fraction in the ventline,
the discharge flow rate, the velocity of depressurization and
the evaporation rate. A small disturbance of one parameter
cause disturbances of all the parameters. The transfer of
such small disturbances is investigated. Fig. 2 shows the
scheme for the transfer of the considered model variables.
The modelling of the transfer of the disturbances bases on
transfer functions formulated in the Laplacian space. The
model is valid for an evaporating one-component system and
a cylindrical pressure vessel.

An initial disturbance for the void fraction is assumed at
the inlet of the ventlineδεin. The ventline was approximated
by assuming a linear all-pass behaviour with a given delay
time. That means that the shape and amplitude of the

disturbance do not change within the ventline and the slip
between the phases within the ventline is neglected. This
assumption is reflected by the transfer function

wventline(s)= exp(−tdelays) (1)

wheretdelayis the delay time and s is independent variable of
the Laplacean space. The delay time is calculated from the
discharged volume flow rate and the volume of the ventline

tdelay= (ρl(1− εout)+ ρvεout)

ṁ
Vventline (2)

When the disturbance of the void fraction reaches the end
of the ventline, where the relief device is located, it causes a
disturbance of the critical mass flow rate. It is assumed that
a change of the mass flow quality at the relief device results
in a sudden change of the flow rate, i.e., the inertia of the
fluid in the discharge channel is neglected. For this reason
the transfer functionwm(s) is reduced to a transfer factor
km. In general, the mass flow rate is a function of pressure
and void fraction at of the relief device. The analyses can
be performed for any chosen critical mass flow model. For
the presented results a simple frozen flow model, derived in
Appendix A, was used:

ṁ= µφAorif

√
p
(
ρl(1− εout)+ ρvεout

)
with φ = √

2− 1.0484ε0.438
out + 0.30603εout (3)

From this equations results:

wm = km = ∂

∂εout
ṁ

= µAorif

[
φ
ρv − ρl

2

√
ρ

ρl(1− εout)+ ρvεout

+ (
0.30603− 0.4592ε−0.562

out

)
×

√
p
(
ρl(1− εout)+ ρvεout

)]
(4)

The disturbance of the discharged mass flow rateδṁ may
be converted into the disturbance of the volume flow rate
related on the vessel volumeδνout by the transfer factorskmν
andkεν .

kmν = ∂νout

∂ṁ
= − 1

Vvessel(ρl(1− εout)+ ρvεout)
(5)

kεν = ∂νout

∂εout
= ṁ(ρv − ρl)

Vvessel(ρl(1− εout)+ ρvεout)2
(6)

The discharged volume has to be compensated by volume
sources caused by the expansion of the phases and by
evaporation. The disturbance of the volume source caused
by expansion for a given disturbance of pressure decay
δ(dp/dt) is calculated by the transfer factorkcomp. There
is a prompt change of the phase volume in case of a change
of the pressure. The factorkcomp is calculated by:

kcomp= ∂νcomp

∂(dp/dt)
= −

(
εvessel

ρv

dρv

dρ
+ (1− εvessel)

ρl

dρl

dp

)
(7)
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The compensation of the volume sources can be expressed
as

δνout + δνeva+ δνcomp

= δνout +wevaδ

(
dp

dt

)
+ kcompδ

(
dp

dt

)
= 0 (8)

This leads to the transfer functionwp , which models the
transfer of a disturbance of the discharged relative volume
flow rate δνout to a disturbance of the pressure decay
δ(dp/dt):

wp(s)= −1

weva(s)+ kcomp
(9)

The transfer functionweva is derived at Appendix B. The
result is:

weva(s) = ∂νeva

∂(dp/dt)

= ρl − ρv

hv − hl

[
1− εvessel

ρv

(
1

ρl
− dhls

dp

)
al

s + al

+ εvessel

ρl

(
1

ρv
− dhvs

dp

)
av

s + av

]
(10)

with

al = αlf

clp(1− εvessel)ρl
and av = αvf

cvpεvesselρv

It describes the transfer of a disturbance of the pressure
decay to the volume source caused by evaporation related
on the vessel volume.

The transfer functionwsep(s) considers the phase separa-
tion within the vessel. It was derived under the assumption
of a non-inertial two-phase flow, where mass conservation
equations and a drift model are the only governing equa-
tions. It reflects the disturbance of the height of the top level
of the mixture resulting from the disturbance of the volume
source caused by evaporation related on the vessel volume.
The complete mathematical details are given in Appendix C.
νeva is calculated according to Eq. (B.21).

wsep(s)

= ζ v

s(1− εvessel)

×
[

1

ν̃

(
exp

(
ν̃zlevel

ζ v

)
− 1

)

− 1

ν̃ + s

(
exp

(
ν̃zlevel

ζ v

)
− exp

(
− szlevel

ζ v

))]
(11)

with

ν̃ = νeva

(1− εvessel)

It is assumed that there is not a sharp level at top of mixture,
but a linear transition fromεlevel to ε = 1. For the height of
this transition layer, called subsequently froth, an empirical
correlation from literature is used [4]:

zfroth = kfrothγfrothj
v
level

√
ρv

γfrothg(ρl − ρv)
4

√
γfroth

d
(12)

with

d = dvessel if dvessel� dlimit
d = dlimit if dvessel� dlimit

dlimit = 260γfroth

(
ρv

ρl − ρv

)0.2

, γfroth =
√

σ

g(ρl − ρv)

The superficial velocity of the vapour phase at the level is
calculated by

jvlevel = ζ vεlevel (13)

with εlevel according to Eq. (C.6). The transfer coefficient
kfroth reflects the disturbance of the vapour volume fraction
at the inlet of the ventline caused by a disturbance of
the location of the level. Because of the above mentioned
assumption of a linear transition it is calculated by

kfroth = 1− εlevel

zfroth
(14)

This completes the transfer of the disturbances. The feed-
back of an initial disturbance of the void fraction at the inlet
of the ventline on itself can be modelled by these transfer
functions. The transfer function for the whole systems de-
scribing the disturbance of the mass flow rate caused by a
disturbance of the vapour volume fraction at the begin of the
ventline is given in the Laplacian space by

H(s)= δṁ

δεin
= wventlinekm

1+Hopen(s)
(15)

with

Hopen(s)= −wventline(kmkmν + kεν)wpwevawsepkfroth

For the analysis of stability the transfer function for the open
systemHopenis plotted for a periodic stimulation (s = iω) at
the complex number plane, i.e., a Nyquist-plot is considered.
The system will oscillate if the disturbance reacts in phase
with an amplification greater than one. This corresponds to
the Nyquist-criterion, which is well known in automation
theory: The system is stable if the plot does not enclose
the point (−1,0). That means if the point (−1,0) is enclosed
oscillations may occur.

3. Case studies

Case studies were performed under consideration of
the properties of the Pressurizer Test Facility (DHVA)
at Hochschule für Technik, Wirtschaft und Sozialwesen
Zittau/Görlitz (FH), which was also used for experiments
described in Chapter 4 (see Table 1 for data). Typical
Nyquist-plots are shown at Fig. 3. In this example case
no oscillations should occur for a length of the ventline
of 0.25 meter, because the point (−1,0) is not enclosed
by the corresponding Nyquist-plot. In case of a ventline
with a length of 0.39 meter this point is just enclosed, the
amplification of a disturbance is near to 1. For case of longer
ventlines the amplification increases. That means for the
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Fig. 3. Nyquist-plots for several lengths of the ventline.

Fig. 4. Predicted amplification and frequency as a function of the ventline
length.

Table 1
Reference data set

Parameter Value

Vessel height 2.96 m
Vessel diameter 0.274 m
Ventline length 1.8 m
Ventline diameter 25 mm
Orifice diameter 6 mm
Pressure 2.25 MPa
Average volume void fraction within the ventline 90%
Velocity of the void phase 0.7 m·s−1

Density of the interface boundary surface 5 m−1

example case oscillations are predicted by the linear stability
analysis for a length of the ventline larger than 0.39 meter.

For the reference parameter set listed in Table 1 the cal-
culated amplification is more than 5. That means oscilla-
tions are predicted by the stability analysis. These oscilla-
tions were also confirmed by transient calculations using the
one-dimensional vessel models BLDN [5,6] and BRICK [7,
8], combined with a simple ventline model [9].

Fig. 5. Predicted amplification and frequency as a function of the discharge
void fraction.

Fig. 6. Predicted amplification and frequency as a function of the pressure.

The dependency of the amplification and the frequency
from the length of the ventline as important parameter is
shown in Fig. 4. The calculated frequencies are valid only for
very small disturbances. In practice the frequency may differ
considerably amongst others because of non-linear effects.
As discussed above oscillations are predicted for a length of
the ventline of more than 0.39 meter.

Another important parameter is the average void fraction
within the ventline. As shown in Fig. 5 the possibility
of oscillations increases very strongly with the ventline
void fraction. The largest amplification is observed for the
extreme case ofε → 1. This region of high void fraction at
the outlet is always passed through during the pressure relief
process (when the level collapses). We can expect the system
to be stable only in case of stability forε → 1, i.e., this is a
adequate condition.

In Figs. 6 and 7 the variation of the system pressure
and the diameter of the orifice is shown. The possibility
that oscillations occur decreases with increasing pressure
and increasing diameter of the orifice. A dependency of the
amplification on the vessel diameter occurs only for vessel
diameter of less than 0.25 meter (see Fig. 8). That means, the
tall vessel of the experimental setup (see below), which is
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Fig. 7. Predicted amplification and frequency as a function of the orifice
diameter.

Fig. 8. Predicted amplification and frequency as a function of the vessel
diameter.

also used at the reference parameter set is not a condition for
the occurrence of the instabilities. The instabilities should
also occur at vessels with a larger diameter.

4. Experiments and transient simulation

Experiments were carried out with water/steam at the
Pressurizer Test Facility at Hochschule für Technik, Wirt-
schaft und Sozialwesen Zittau/Görlitz (FH). The pressure
vessel is equipped with a 1.8 m long ventline with an
inner diameter of 25 mm. The diameter of the relief device
amounts to 6 mm. The predicted pulsations were confirmed
by these experiments. Even the sound produced by the
discharge has shown periodical changes, which could be
clearly heard. Oscillations were found in the readings of the
pressure drop over the ventline as well as in the signals of
the needle shaped conductivity probes that measure the local
void fraction.

The oscillations are measured already at the inlet of the
ventline, meaning that they are not caused by establishing
of a plug flow within the ventline. There is a time delay of

Fig. 9. Measured and calculated oscillations of the volume void fraction
within the ventline.

the oscillations at the three different needle probes in the
ventline, which reflects the transport time.

Transient simulations were made using the BRICK
code [7,8]. Fig. 9 includes a comparison of the averaged
void fraction within the ventline measured by the pressure
drop and calculated by the brick code. Apart from the dis-
agreement in the first seconds, which may be caused by non-
condensibles in the experimental setup, the frequency of the
oscillations as well as the sawtooth type shape and the de-
crease of the frequency with time show a very good agree-
ment.

5. Conclusions

Oscillations of the mass quality in the discharged two-
phase mixture connected with considerable pulsations of the
discharge mass flow rate were predicted by linear stability
analysis and by transient calculations. They were confirmed
qualitatively by first experiments. For further investigations
a more detailed modelling of froth layer, of the fluid
entrainment and the ventline as well as some modifications
of the experimental setup are necessary.

The probability for the occurrence of the pulsations rises
with the volume of the ventline between vessel and relief
device. It could be possible that these pulsations lead to
additional mechanical loads on the blow down system and
that they influence the efficiency of separators or condensers.
In addition to the mechanism of the oscillations considered
here, also other mechanisms are possible, e.g., a spontaneous
transition to a slug flow regime within the ventline.

Appendix A. Critical discharge model

In the calculations, an isentropic homogeneous flow
model was used. It is based on the assumption of a perfect
absence of both evaporation and slip, i.e., the liquid phase is
entering into the region of metastability, while the moment
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of both phases are in equilibrium. The following system
of equations must be integrated along the flow path in the
discharge channel:

d0h= v dp (A.1)

ζ = √
20h (A.2)

ṁ

A
= ζ

v
(A.3)

Here, Eqs. (A.1) and (A.2) represent the momentum conser-
vation,0h is the decrease of the specific enthalpy due to the
acceleration of the fluid. Eq. (A.3) describes the increase of
the velocity with decreasing cross section of the discharge
channel.

The assumption of a maximal thermodynamic non-equi-
librium leads to a corresponding state equation. It was
assumed that the density of the liquid phase remains constant
during the expansion, i.e., the specific volume of the liquid
preserves the initial value, which is given by saturation
conditions in front of the discharge orifice, i.e., at the
pressure before the start of the acceleration. This is a
reasonable approximation for incompressible liquids, like
water. For the state change of the vapour phase a constant
adiabatic coefficient (κ = 1.3) was assumed:

v = vlout(1− xout)+ vvout

(
pout

p

)1/κ

xout (A.4)

After integrating Eq. (A.1) and considering Eqs. (A.2) to
(A.4) we get the mass flow density as a function of the local
pressure in the discharge channel:

ṁ

A
=

√
2pout
vout

(
ṽlout(1−xout)

(
1−p̃)+ṽvout

κ
κ−1

(
1−p̃(κ−1)/κ)xout

)
ṽlout(1−xout)+ṽvoutp̃

−1/κ xout
(A.5)

In Eq. (A.5) related specific volumes

ṽlout =
vlout

vout
and ṽvout =

vvout

vout

vout = vlout(1− xout)+ vvoutxout

(A.6)

and a pressure ratio

p̃ = p

pout
(A.7)

were introduced. The vapour mass fractionxout at the inlet of
the discharge channel is substituted by the void fractionεout.
In this way, the mass flow density can be made independent
of the physical propertiesvlout andvvout:

ṁ

A
=

√
2pout
vout

(
(1− εout)

(
1− p̃

) + εout
κ
κ−1

(
1− p̃(κ−1)/κ

))
(1− εout)+ εoutp̃−1/κ

(A.8)

The only physical property remaining in Eq. (A.8) is the
adiabatic coefficient for the void. The critical pressure ratio
is reached, when the mass flow densityṁ/A is maximal, i.e.,
when the corresponding cross Appendix A is minimal. The
maximum of Eq. (A.8) is found numerically with the initial

void volume fraction as a parameter. The results were fitted
by the following correlation:

ṁ=Acrit

√
pout

vout

(√
2− 1.0484ε0.438

out + 0.30603εout
)

(A.9)

Considering the relation

1

vout
= ρl(1− εout)+ ρvεout (A.10)

and introducing a factorµ, which considers the contraction
of the fluid (µ=Acrit/Aorif), finally yields:

ṁ= µφAorif

√
p
(
ρl(1− εout)+ ρvεout

)
(A.11)

with

φ = √
2− 1.0484ε0.438

out + 0.30603εout

For the discharge modelεout is an input parameter charac-
terizing the state of the two-phase mixture in front of the
discharge device. In case of a single phase flow (εout = 0),
the mass flow density reduces to the value for liquid dis-
charge according to the Bernoulli-equation. At growingεout
the mass flow rate decreases. Main advantage of Eq. (A.11)
is that it is very easy to handle. In reality, the metastability
is more or less destroyed due to evaporation, which leads to
an overestimation of the mass flow by Eq. (A.11). The ac-
curacy of the model increases with decreasing length of the
discharge channel.

Appendix B. Transfer function for the rate of
evaporation

Starting point is the conservation equation for the specific
energy of the phasei:

∂

∂t
εiρiui + ∂

∂z
εiρihiζ i + p

∂

∂t
εi

= ±Γ his + qiphases+ qisources (B.1)

with

Γ = −q
i
phases+ q

j

phases

r

qiphases= αif
(
T is − T i

) ≈ αif

cip

(
his − hi

)
Γ is the mass transfer rate from liquid to void phase per
volume. The positive sign is valid for the vapour phase, the
negative for the liquid.qiphasesis the heat flow density from

the phasei to the boundary surface of the phase andqisources
is the heat flow density from the vessel wall or chemical
reaction to phasei.

Substitution

ui = hi − p

ρi
(B.2)

leads to
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∂

∂t
εiρihi + ∂

∂z
εiρihiζ i − εi

dp

dt

= ±Γ his + qisources+ qiphases (B.3)

Considering the conservation equation for the mass

∂

∂t
εiρi + ∂

∂z
εiρiζ i = ±Γ (B.4)

and the transition to the total differential
∂

∂t
hi + ζ i

∂

∂z
hi = d

dt
hi (B.5)

one gets

d

dt
hi = 1

ρi

dp

dt
+ ±Γ (his − hi)+ q̇ isources+ qiphases

εiρi
(B.6)

Replacement ofG andqiphasesaccording the terms given at
Eq. (B.1) yields:

d

dt
hi = 1

ρi

dp

dt
+ qsources

εiρi

+
(

1∓ his − hi

r

)
αif

cipε
iρi

(
his − hi

)

∓ his − hi

r

αj f

c
j
pε
iρi

(
h
j
s − hj

)
(B.7)

where the upper sign is valid for the vapour phase and the
lower for the liquid phase. The coupled system of differential
equations is decoupled by the assumptions that there occurs
only a small deviation from the equilibrium state and that
the system is away from the thermodynamic critical state.
For these assumptions is

0hi = hi − hs � r (B.8)

and terms of second order can be neglected. In the end one
gets

d

dt
0hi + αif

cipε
iρi

0hi = 1

ρi

dp

dt
+ qsources

εipi
− d

dt
his (B.9)

This equation is used to consider the time dependent
behaviour of0hi in case of a sudden change of dp/dt at
t = 0 (jump from dp/dt to dp/dt + δ{dp/dt}. Defining

ai = αif

cipε
iρi

(B.10)

and

bi = 1

ρi

dp

dt
+ qsources

εiρi
− d

dt
his

= qsources

εiρi
+

(
1

ρi
− d

dp
his

)
dp

dt
(B.11)

for the values at the working point and

δbi =
(

1

ρi
− d

dp
his

)
δ

{
dp

dt

}
(B.12)

the differential equation has the general solution fort > 0

0hi = Ci exp
(−ait) + bi + δbi

ai
(B.13)

With the conditions

0hi(t = 0)= bi

ai
and lim

t→∞0h
i(t)= bi + δbi

ai
(B.14)

the special solution for the considered jump function for
dp/dt is found as

0hi = 0hi0 + δ
(
0hi

)
= bi

ai
+ (

1− exp
(−ait))δbi

ai
(B.15)

The volume source density caused by evaporation is calcu-
lated by

νeva =
(

1

ρv
− 1

ρl

)
Γ

= 1

r

(
1

ρv
− 1

ρl

)(
αlf

clp
0hl + αvf

cvp
0hv

)
(B.16)

Considering Eqs. (B.10), (B.11) and (B.12) the disturbance
is given by

δνeva=Weva(t)δ

{
dp

dt

}
(B.17)

with

Weva = 1

r

(
1

ρv
− 1

ρl

)(
εlρl

(
1

ρl
− d

dp
hls

)(
1− exp

(−alt))
+ εvρv

(
1

ρv
− d

dp
hvs

)(
1− exp

(−avt)))

Using the relations for the Laplace transformation

L{1} = 1

s
and L

{
exp

(−ait)} = 1

ai + s
(B.18)

and considering the whole vessel volumeεv → εvessel the
transfer function is found as

weva(s) = L{Weva(t)}
L{1}

= ρl − ρv

hv − hl

[
1− ε̄

ρv

(
1

ρl
− dhls

dp

)
al

s + al

+ ε̄

ρl

(
1

ρv
− dhvs

dp

)
av

s + av

]
(B.19)

The special case of thermodynamic equilibrium is obtained
by the limit testai → ∞, what yields

Aeva = lim
ai→∞

weva(s)

= ρl − ρv

hv − hl

[
1

ρvρl
− 1− ε̄

ρv

dhls
dp

− ε̄

ρl

dhvs
dp

]
(B.20)

This transfer factor does not depend on s. The evaporation
rate change prompt with a change of dp/dt .

The volume source caused by evaporation related on
the vessel volume for the working point of the system is
calculated according to
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νeva = Aeva
dp

dt

= Aevaṁ

(Aeva+Acomp)VVessel(ρL(1− εout)+ ρV εout)

(B.21)

Appendix C. Transfer function for the phase separation

The change of a vapour volume with the height0z in the
time0t is given by:

0V v = V̇ v(z, t)0t − V̇ v(z+0z, t)0t

+ νv(z, t)Avessel0z0t (C.1)

Dividing this equation byAvessel0z0t and considering

jv(z, t)= V̇ v(z, t)

Avessel
= ζ vε(z, t) (C.2)

one gets

∂ε

∂t
+ ζ v

∂ε

∂z
= νv(z, t) (C.3)

The liquid velocity is assumed to be zero and the vapour
velocity ζ v is assumed to be constant in space and time
in order to simplify the derivation. The vapour volume
source is caused by evaporation. Volume sources caused
by the compressibility of the phases are neglected for this
derivation. For this reason the vertical distribution of the
volume source only depends on the volume fraction of the
liquid phase:

νv(z, t)= ν̄v
1− ε(z, t)

1− εvessel
(C.4)

The disturbance of the location of the top level of the mixture
mainly depends on the sum of the changes of volume
sources for all phases. For this reason the averaged volume
source for the vapour phasēνv is replaced byνeva (see
Eq. (B.21)), which is the sum of the volume sources caused
by evaporation for both phases. The resulting differential
equation is

∂ε

∂t
+ ζ v

∂ε

∂z
= ν̃(1− ε) with ν̃ = νeva

1− εvessel
(C.5)

For the working pointνeva is not a function of time. For
this reason is an appropriate solution of this equation.

ε = 1− exp

(
− ν̃z
ζ v

)
(C.6)

A small disturbance ofν causes a disturbance ofε. This
leads to:
∂

∂t
(ε+ δε)+ ζ v

∂

∂z
(ε+ δε)= (

ν̃ + δν̃
)(

1− (ε+ δε)
)
(C.7)

Neglecting terms of second order and considering Eq. (C.5)
an equation for the disturbance is received:

∂

∂t
δε+ ζ v

∂

∂z
δε+ ν̃δε = (1− ε)δν̃ = exp

(
− ν̃z
ζ v

)
δν̃ (C.8)

The general solution of this partial differential equation is

δε = C exp

(
− ν̃z
ζ v

)
F

(
t − z

ζ v

)
+ t exp

(
− ν̃z
ζ v

)
δν̃ (C.9)

whereF is any function. Considering the conditions

δε(t = 0, z)= 0 (C.10)

and

δε(t → ∞, z)= z

ζ v
exp

(
− ν̃z
ζ v

)
δν̃ (C.11)

a special solution is found as

δε = t exp

(
− ν̃z
ζ v

)
δν̃ for t � z

ζ v

δε = z

ζ v
exp

(
− ν̃z
ζ v

)
δν̃ for t � z

ζ v

(C.12)

Using the jump functionΘ this can be written as

δε =
[
t −

(
t − z

ζ v

)
Θ

(
t − z

ζ v

)]
exp

(
− ν̃z
ζ v

)
δν̃ (C.13)

The Laplace transformation yields:

L{δε} = 1− exp(−zs/ζ v)
s2

exp

(
− ν̃z
ζ v

)
δν̃ (C.14)

Assuming the conservation of the liquid volume the dis-
placement of the level is given by:

δzlevel =
∫ zlevel

0 δεdz

(1− εlevel)
(C.15)

That means the searched transfer function has to be calcu-
lated according to:

wsep= δzlevel

δνeva
= 1

(1− εlevel)

∫ zlevel
0 L{δε}dz

δνevaL{1} (C.16)

According to Eq. (C.6) applies

1

(1− εlevel)
= exp

(
ν̃zlevel

ζ v

)
(C.17)

Execution of the integration and consideration of Eq. (C.5),
yields

wsep(s) = ζ v

s(1− εvessel)

×
[

1

ν̃

(
exp

(
ν̃zlevel

ζ v

)
− 1

)

− 1

ν̃ + s

(
exp

(
ν̃zlevel

ζ v

)
− exp

(
− szlevel

ζ v

))]
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